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A modified algorithm for X-ray dynamical diffraction theory is presented for

curved boundary crystals and a detailed description of the numerical procedure

is given. The simulated and experimental results both show an anomalous

focusing behavior in a curved multi-plate crystal cavity of silicon under the

ð120400Þ back-diffraction condition at a photon energy of 14.4388 keV. The

focusing effects are analyzed, within the framework of the dynamical theory of

X-ray diffraction, from the excitation of the dispersion surface and modification

of the index of refraction with respect to the non-plane-parallel boundaries of a

curved crystal cavity.

1. Introduction

An X-ray Fabry–Perot-type resonator has recently been

realised and the interference due to cavity resonance has been

observed by using Si ð120400Þ back reflection for 14.4388 keV

X-rays (Chang et al., 2005). A curved multi-plate crystal cavity

(Chang, Chen, Weng et al., 2010; Chang, Chen, Wu et al., 2010)

was then developed by combining the X-ray Fabry–Perot

crystal cavity with a compound refractive lens (CRL)

(Snigirev et al., 1996, 2009), aiming for focusing X-ray beams

under resonance conditions. The former could confine X-rays

inside the cavity to reach cavity resonance (Bond et al., 1967;

Kohn et al., 2000; Chang et al., 2006; Chen et al., 2008). The

latter, consisting of a linear array of lenses, is for common

X-ray focusing via refraction. The curved multi-plate crystal

cavity was designed by making the optical axis of the CRL

perpendicular to the ð120400Þ back-reflection plane. As the

X-ray beam passes through this crystal device under the back-

diffraction condition, refraction and diffraction occur simul-

taneously, thus leading to resonance-enhanced beam focusing.

To account for this enhanced beam focusing, we apply in this

paper the dynamical diffraction theory to calculate the spatial

and angular distributions of the transmitted beam through the

crystal device. von Laue’s treatment (von Laue, 1931) and the

numerical algorithm of Stetsko & Chang (1997) are adopted.

The Cartesian coordinate system is used to represent the

X-ray wavefields and dispersion surface. The differences

between curved multi-plate crystals and conventional plane-

parallel crystal plates are taken into account by modifying the

calculation algorithm. The major differences are: (i) the crystal

surface is not parallel to the ð120400Þ atomic planes; (ii) the

entrance and exit surfaces of the crystal device are not parallel

to each other; and (iii) the slope of the crystal surface is

varying. Since this kind of complicated crystal boundary has

not been handled in dynamical calculations in detail in the

literature, it is the purpose of this paper to propose a modified

algorithm to solve the overall wavefields in a curved crystal

and to apply it to a multi-plate crystal cavity. Experimental

measurements of the transmitted beam through the curved

crystal device are also shown and compared with the dyna-

mical simulations.

2. Theory

In von Laue’s dynamical theory, the atomic charges in a crystal

were treated as continuous distributions and the dielectric

susceptibility was represented as a periodic complex function.

Furthermore, Maxwell’s equations were used to deal with the

interactions of X-rays with a crystal lattice by considering the

dielectric susceptibility �. The solutions of the wavefields to

Maxwell’s equations are assumed to be Bloch waves. Ulti-

mately, one could obtain the fundamental equation of a

wavefield for N diffracted beams (Stetsko & Chang, 1997;

Authier, 2001; Chang, 2004):

ðKm � Km � k2
ÞEm ¼ ðKm � EmÞKm þ k2

P
n

�m�nEn; ð1Þ

where m ¼ O;G1;G2; . . . ;GN�1, Km are the wavevectors of

the mth reflection inside the crystal and Em is the corre-

sponding electric field. For a given wavelength � and a fixed

incident angle, one can compute the excited wavefields inside

the crystal by solving the fundamental equation. Then, by

taking the entrance and exit boundary conditions into

account, full information about the electromagnetic waves

inside and outside the crystal can be obtained. For imperfect

crystals, Takagi–Taupin equations need to be considered

(Okitsu, 2003).

Based on the proposed algorithm (Stetsko & Chang, 1997),

the vector form of the fundamental equation (1) can be

decomposed into three scalar ones. Therefore, the funda-

mental equation can be solved as an eigenvalue equation of a
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matrix form with three scalars representing the x, y and z

components of the Cartesian coordinates.

For a given set of atomic planes GðhklÞ, the reciprocal-

lattice vector is expressed as g ¼ OG ¼ ha� þ kb� þ lc�,

where Oð000Þ is the origin of the reciprocal lattice. The

reflection G can be symmetric or asymmetric, depending on

whether the reciprocal-lattice vector g is parallel to the crystal

surface normal n. For an asymmetric reflection, the angle �
between the atomic planes and the crystal surface is non-zero.

In order to handle the boundary conditions more directly, the

z axis is defined to be parallel to the direction n normal to the

crystal surface and the x and y axes are arbitrarily chosen.

Accordingly, the z components of the electric fields are

perpendicular and the x and y components are parallel to the

crystal surface. In this way the relative orientation of the

reciprocal-lattice vector and the z axis of the Cartesian coor-

dinates in the symmetric diffraction geometry is clearly

different from that in the asymmetric case. Fig. 1 shows a two-

beam diffraction geometry for a general situation with � 6¼ 0.

When g is parallel to n, the z axis and g are parallel to each

other. When g is not parallel to n, the angle between the z axis

and g is �.

After choosing the coordinates for the reciprocal space, the

reciprocal-lattice points Gm of the mth reflection can be

defined as ðXGm;YGm;ZGmÞ. As shown in Fig. 1(a), the inter-

section of the two spheres of radius equal to 1=� centered at

the points OðX0;Y0;Z0Þ and GðXG1;YG1;ZG1Þ is the Laue

point, denoted as La. The wavevectors LaO and LaG satisfy

Bragg’s condition, i.e. LaG ¼ LaOþ g. The corresponding

geometry in real space is shown in Fig. 1(b) where the incident

angle is �B þ � and the outgoing angle is �B � �. �B is the

Bragg angle of the G reflection.

For N-beam diffraction in the Bragg geometry, there are 4N

excited tie points, namely 4N modes of wave propagation, thus

leading to 4N diffracted waves and 4N transmitted waves

inside the crystal. For simplicity, Fig. 2 is an example

describing the relation between the dispersion surface and the

wavevector in real and reciprocal space for two-beam

diffraction with a �-polarized incident wave. An incident beam

k0 which impinges on the crystal at an incident angle ð�; �Þ is

represented as EO where E is the entrance point. The coor-

dinates of point E are denoted as ðXc;Yc;ZcÞ in reciprocal

space and defined as

ðXc;Yc;ZcÞ ¼
1

�
cos � sin�;

1

�
cos � cos �;

1

�
sin �

� �
; ð2Þ

where � is the angle between the incident beam and the xy

plane and � is the angle between the y axis and the projection

of the incident beam on the xy plane (Chiu et al., 2008).

In reciprocal space, the incident beam EO excites the

dispersion surface at tie points Tj along the entrance surface

normal n1 and generates diffracted beams TjG ¼ KGð jÞ and

transmitted beams TjO ¼ KOð jÞ inside the crystal, and the

diffracted beam NG in front of the entrance surface.

As shown in Fig. 2(a), as N ¼ 2 and the beam is �-polarized,

there are only four modes of wave propagation excited at the

tie points labeled as T1, T2, T3 and T4, i.e., Tj for j ¼ 1; . . . ; 4.

The coordinates of the tie point are ðXc;Yc; zjÞ where the X

and Y coordinates are the same as that of the entrance point

due to the continuity of the tangential components inside and

outside the crystal at the boundary. In the case we deal with, �
is set to 0�, leading to ðXc;Yc;ZcÞ ¼ ½0; ð1=�Þ cos �; ð1=�Þ sin ��
and all the wavefields are located in the YZ plane.

When KOð jÞ and KGð jÞ arrive at the exit surface, they

generate the outgoing wavevectors ko2ðjÞ and kG2ðjÞ, respec-

tively. The directions of these outgoing wavevectors are

determined by the exit surface normal n2 due to the same

reason as for the entrance surface. In other words, the exit

points M1; . . . ;M4 on the sphere O and N1; . . . ;N4 on the

sphere G are excited, as shown in Fig. 2(c), thus leading to the

transmitted beams MjO ¼ kO2ð jÞ and the diffracted beams

NjG ¼ kG2ð jÞ behind the exit surface. However, the z

component of tie point Tj, zj, is to be determined. The

unknown zj can be solved from the fundamental equation

expressed in the following matrix form:
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Figure 1
Geometric relationship of asymmetric two-beam diffraction in (a)
reciprocal space and (b) real space.

Figure 2
The excitation of the dispersion surface with respect to the entrance
surface (l = 1) (a) and the exit surface (l = 2) (c), and the corresponding
wavevectors, (b) and (d), inside and outside a crystal with non-parallel
crystal boundaries for two-beam diffraction. In the case of back
diffraction, the spheres centered at O and G are nearly tangential to
each other at the center of the straight line OG and the Bragg angle is
very close to �=2. This situation increases the width of the total reflection
region.



C� zI 0 AG�2A� I AG�2B

0 C� zI BG�2A BG�2B� I

B2 �G2
�AB C� zI 0

�AB A2
�G2 0 C� zI

2
6664

3
7775

Ex

Ey

Ev

Ew

2
6664

3
7775

¼ ðQ4 � zIÞE4 ¼ 0 ð3Þ

and

Ez ¼ �G�2
ðAEv þ BEwÞ; ð4Þ

where

Ex ¼ ðE
x
O;Ex

G1
; . . . ;Ex

GN�1
Þ

T; Ey ¼ ðE
y
O;E

y
G1
; . . . ;E

y
GN�1
Þ

T;

Ez ¼ ðE
z
O;Ez

G1
; . . . ;Ez

GN�1
Þ

T :

A, B, and C are diagonal matrices whose diagonal entries are

amm ¼ xm ¼ XGm
� Xc, bmm ¼ ym ¼ YGm

� Yc and

cmm ¼ ZGm
, respectively. G2

¼ k2ðIþ FÞ, where the entries of

matrix F are fmn ¼ �Gm�Gn
.

Following the proposed algorithm (Stetsko & Chang, 1997),

the fundamental equation is expressed as the scalar equation

in a matrix form, equations (3) and (4), which can be solved as

an eigenvalue problem. The eigenvalues zj and eigenvectors

ðEx;Ey;Ev;EwÞ of the matrix Q4 represent the z values of the

tie points and the excited electric fields inside the crystal. The

real part of zj determines the coordinates of tie points on the

dispersion surface and the imaginary part corresponds to the

absorption. The wavevector of the excited wave m for mode j

is expressed as

Kmð jÞ ¼ Tjm ¼ ðXm � Xc;Ym � Yc;Zm � zjÞ ¼ ðxm; ym; zmjÞ;

where m ¼ O;G1;G2; . . . ;GN�1: ð5Þ

Moreover, the z component of the electric field, Ez, can be

calculated from the eigenvector ðEv;EwÞ given in equation (2).

Thus, the electric fields associated with the wavevectors Kmð jÞ

are expressed as Emð jÞ ¼ ½E
x
mð jÞ;Ey

mð jÞ;Ez
mð jÞ�. However, the

eigenvectors give only the ratios among the electric fields

Emð jÞ. The proportionality constants, Cj, are yet to be solved

from the boundary conditions. Thus, the overall electric fields

inside and outside the crystal can then be determined entirely.

For solving Cj, one has to consider the entrance and exit

boundaries together. However, when the two surfaces are not

parallel to each other, the z axis of the entrance surface is not

perpendicular to that of the exit surface. Under this circum-

stance the use of two different coordinate systems is essential

in dealing with the two different boundaries.

At both boundaries, the continuities of the tangential

components of the electric and magnetic fields, E and H, and

of the normal components of the electric displacements D

are employed. For the N-beam diffraction, the x, y and z

components of the electric fields inside and outside the crystal

are connected by the following boundary conditions:

Dm ¼ "0 Em þ
PN�1

n¼0

�Gm�Gn
En

� �
; Hm ¼

1

k
ðKm � EmÞ: ð6Þ

At the entrance surface (l ¼ 1) these relations are formulated

as

Ex:
P4N

j¼1

cjE
x
mð jÞ ¼ Ex

ðiÞ	mO þ Ex
m1

Ey:
P4N

j¼1

cjE
y
mð jÞ ¼ E

y
ðiÞ	mO þ E

y
m1

Dz:
P4N

j¼1

cj Ez
mð jÞ þ

PN�1

n¼0

�Gm�Gn
Ez

nð jÞ

� �
¼ Ez

ðiÞ	mO þ Ez
m1

Hx:
P4N

j¼1

cj½zmjE
y
mð jÞ � ymEz

mð jÞ�

¼ ðkz
mE

y
ðiÞ � ymEz

ðiÞÞ	mO � ðk
z
mE

y
m1 þ ymEz

m1Þ

Hy :
P4N

j¼1

cj½xmEz
mð jÞ � zmjE

x
mð jÞ�

¼ ðxmEz
ðiÞ � kz

mEx
ðiÞÞ	mO þ ðxmEz

m1 þ kz
mEx

m1Þ; ð7Þ

where ðEx
ðiÞ;E

y
ðiÞ;Ez

ðiÞÞ is the electric field of the incident

wave and ðEx
m1;E

y
m1;Ez

m1Þ are the electric fields of the

diffracted waves m in front of the entrance surface (l ¼ 1)

with the wavevector km ¼ ðxm; ym;�kz
mÞ, where kz

m ¼

�½k2 � ðx2
m þ y2

mÞ�
1=2. Since r1 is a null vector, the wavefunc-

tions  m1ð jÞ ¼ expð�2�iKm � r1Þ and ’m1 ¼ expð�2�ikm � r1Þ

are equal to 1 and are omitted in equation (7).

On the other hand, at the exit surface all the components of

the wavefields are defined by a new coordinate system where

the new z axis is perpendicular to the exit surface shown in Fig.

2(b). The new coordinate system is constructed by using the

rotation matrix as follows:

x0m

y0m

z0mj

2
64

3
75 ¼

1 0 0

0 cos! sin!

0 � sin! cos!

2
64

3
75

xm

ym

zmj

2
64

3
75

¼

xm

ym cos!þ zmj sin!

�ym sin!þ zmj cos!

2
64

3
75: ð8Þ

The new coordinates are then labeled with primes. Since the

two boundaries are not parallel to each other, the wavevectors

of the transmitted and diffracted beams are split into 4N

directions after going through the exit surface. Fig. 2(d) shows

four splitting beams separately in a two-beam ðO;GÞ diffrac-

tion with a �-polarized incident wave. In other words, the

beam splitting leads to the situation in which each excited

mode should be calculated separately while dealing with the

exit boundary conditions. In addition, the new x0m and y0m are

possibly complex numbers due to the coordinate transforma-

tion, namely, the z component of the wavevector outside the

exit surface is defined as

k0zm ¼ � k2 � ½Reðx0mÞ
2
þ Reðy0mÞ

2
�

� �1=2
: ð9Þ

At the exit surface (l ¼ 2) the boundary conditions are

formulated as
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E0x: cjE
0x
mð jÞ m2ð jÞ ¼ E0xm2ð jÞ’m2ð jÞ

E0y: cjE
0y
mð jÞ m2ð jÞ ¼ E

0y
m2ð jÞ’m2ð jÞ

D0z: cj E0zmð jÞ þ
PN�1

n¼0

�Gm�Gn
E0zn ð jÞ

� �
 m2ð jÞ ¼ E0zm2ð jÞ’m2ð jÞ

H0x: cj½z
0
mjE
0y
mð jÞ � y0mjE

0z
mð jÞ� m2ð jÞ

¼ ½Reðk0zmjÞE
0y
m2ð jÞ � Reðy0mjÞE

0z
m2ð jÞ�’m2ð jÞ

H0y: cj½x
0
mjE
0z
mð jÞ � z0mjE

0x
mð jÞ� m2ð jÞ

¼ ½Reðx0mjÞE
0z
m2ð jÞ � Reðk0zmjÞE

0x
m2ð jÞ�’m2ðjÞ; ð10Þ

where j ¼ 1; . . . ; 4N,  m2ð jÞ ¼ exp½�2�iK0mð jÞ � r
0
2�, ’m2ð jÞ ¼

exp½�2�ik0mð jÞ � r
0
2�, K0mð jÞ ¼ ðx

0
mj; y0mj; z0mjÞ and k0mð jÞ ¼

½Reðx0mjÞ;Reðy0mjÞ; k0zm�. In the new coordinate system, K0m and

k0m are, respectively, the wavevectors inside and outside the

crystal and r02 is the position vector of the exit point. The total

number of unknowns in equations (7) and (10) is 10N,

including 4N unknown Cj and 6N unknown components of the

electric fields, ðEx
ml;E

y
ml;Ez

mlÞ and ðE0xm2;E
0y
m2;E0zm2Þ, in front of

the entrance surface and behind the exit surface, respectively.

The next step is to solve the unknown Cj. By combining the

first and third equations into the fifth one in equation (7), the

unknowns Ex
m1 and Ez

m1 are eliminated. The same procedure

was implemented for the rest of equations (7) and (10).

Finally, the simplified equations are

P4N

j¼1

cj ½zmj þ kz
m�E

x
mð jÞ þ xm

PN�1

n¼0

�Gm�Gn
Ez

nð jÞ

� 	
¼ 2kz

mEx
ðiÞ	mO

P4N

j¼1

cj ½zmj þ kz
m�E

y
mð jÞ þ ym

PN�1

n¼0

�Gm�Gn
Ez

nð jÞ

� 	
¼ 2kz

mE
y
ðiÞ	mO

P4N

j¼1

cj

�
½z0mj � k0zmð jÞ�E

0x
mð jÞ þ Re½x0mð jÞ�

PN�1

n¼0

�Gm�Gn
E0zn ð jÞ

þ Im½x0mð jÞ�E
0z
mð jÞ

	
exp½�i2�K0m2ð jÞ � r

0
2� ¼ 0

P4N

j¼1

cj

�
½z0mj � k0zmð jÞ�E

0y
mð jÞ þ Re½y0mð jÞ�

PN�1

n¼0

�Gm�Gn
E0zn ð jÞ

� Im½y0mð jÞ�E
0z
mð jÞ

	
exp½�i2�K0m2ð jÞ � r

0
2� ¼ 0: ð11Þ
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Figure 3
Simulations of the electric field and intensity of Si ð120400Þ back diffraction in trapezoid crystals: (a) and (c) for 50 mm, and (b) and (d) for 300 mm crystal
thickness. (e) Schematic of the wavevectors in front of and behind a trapezoid crystal.



There are 4N equations which exactly correspond to 4N

unknown Cj. After solving the Cj, one can substitute Cj into

equations (7) and (10) to obtain all the components of the

electric fields outside the crystal.

3. Simulation

3.1. Trapezoid crystal

Fig. 3 shows the simulation for ð120400Þ back diffraction with

a �-polarized incident wave in trapezoid crystals of thick-

nesses 50 and 300 mm for a photon energy around 14.4388 keV.

Figs. 3(a) and (b) display the absolute value of the transmitted

electric field of each individual mode as a function of the

X-ray energy. The simulation results show that the excitations

of modes 1 and 4 are almost zero, so the dominant modes are

modes 2 and 3 for the transmitted beam. However, by

comparing the transmitted electric field of mode 3 for the two

different thicknesses, one can find that an increase in thickness

makes mode 3 weaker. The reason comes from the direction of

the Poynting vector, which describes the energy flow of the

wavefield. The Poynting vector is labeled as Sj for the jth

mode. The energy flow directs towards the interior of the

crystal by S2 and points out of the crystal by S3. However,

when the crystal thickness is too thick, the absorption effect

makes S3 almost disappear. Therefore, mode 3 exists with an

appreciable amplitude only in a thin crystal. Figs. 3(c) and (d)

show the transmitted and back-diffracted intensities as a

function of X-ray energy at the outgoing point B and incident

point A (see Fig. 3e). It shows that the ð120400Þ back diffraction

occurs within an energy range of about �E =	15 meV. In this

range, the non-parallel boundaries cause the transmitted beam

splitting, while the diffraction beam is kept along the same

direction as shown schematically in Fig. 3(e).

3.2. Curved crystal

Crystal devices consisting of compound refractive lenses as

shown in Fig. 4(a) are designed to observe the influence of

beam focusing due to the curved boundaries for X-ray back

diffraction. The atomic plane ð120400Þ of Si is chosen as the

back reflection at the photon energy of 14.4388 keV. The

optical axis of the lens is designed to be along ½120400�.

Therefore, beam focusing is accompanied with back diffrac-

tion when the transmitted beam passes through the crystal

devices. There are two different parameters listed in Table 1

for the focusing crystal devices. The formula foptics ¼ R=2N	 is

used to estimate the ideal focal length of optical refraction,

where 	 is the correction of the real part of refractive index

(n ¼ 1� 	þ i
) (Als-Nielsen & McMorrow, 2001; Schroer et

al., 2005).

The simulation for beam focusing is carried out by using the

above-mentioned dynamical theory for asymmetric and

nonparallel boundaries. On the curved surface, an incident

beam with a horizontal beam size of 120 mm is divided into

several wavelets, each of which has a beam size of 0.1 mm.

After solving the electric field and wavevector inside and

outside the crystal, all of the outgoing waves are integrated to

give a two-dimensional intensity mapping of the transmitted

beam through the focusing device. Fig. 4(a) simply depicts the

layout of the crystal device and the intensity mapping. From

the intensity distribution, the variation of the horizontal beam

size along the [000] direction can be extracted. Figs. 4(b) and
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Figure 4
(a) The top view of the refractive lens of Si (left) and the intensity
distribution of the transmitted beam at the exit end of the lens. Calculated
beam sizes at �E = 5 meV at the exit end of the lens with (red line) and
without (black line) the ð120400Þ back diffraction in two different designs:
(b) device 1 and (c) device 2 (the accuracy of the beam-size calculation is
0.1 mm).

Table 1
The different designs of compound refractive lenses.

t and g are the thickness and gap of the parabola apex, respectively, R is the
radius of the parabola apex, and N is the number of lenses.

Device
No. t (mm) g (mm) R (mm) N foptics (mm)

1 10 90 40 12 715
2 20 180 25 9 596



4(c) show the calculated beam sizes of the two different crystal

devices, respectively, where the red and black dotted lines

indicate the beam sizes with and without back diffraction

(optical refraction). We assume that the integrated intensity of

the incident beam is 1. Then the integrated intensities of the

transmitted beams through devices 1 and 2 at the focal point

are 0.086 and 0.12 for the diffraction case and 0.163 and 0.377

for the optics case. As is clearly seen, the two devices exhibit

the similar behavior of having a reduced focal length under

the back-diffraction condition.

This anomalous focusing phenomenon can be understood

by analyzing the excitation of the dispersion surface. The

coordinates of a point on the dispersion surface are deter-

mined from the difference between the wavevectors inside and

outside the crystal. In other words, it gives information about

the variation of the refractive index as a function of z. In Fig.

5(a), the black and green curves show some portions of the

Ewald spheres outside and inside the crystal. The difference

between them is k� n0k ð¼ k	0Þ. When the geometry satisfies

the diffraction condition, the dispersion surface (red curve) is

excited rather than the green curve. Therefore, the refractive

behavior under the diffraction condition is not like the

conventional optical refraction, because there are several

modes with 	ð jÞ [or nð jÞ] different from 	0 (n0).

Fig. 5(b) depicts the calculated 	ð jÞ as a function of the

energy in the vicinity of the exact energy, Eexact(= 14438.8 eV),

of the ð120400Þ back reflection. 	ð2Þ and 	ð3Þ are derived from

the excitations of mode 2 and 3, respectively. Compared to 	0,

the value of 	ð jÞ varies drastically around Eexact. At energies

far away from Eexact, 	ð2Þ approaches 	0 and 	ð3Þ disperses.

When E is higher than Eexact, 	ð2Þ and 	ð3Þ are larger than 	0.

Under this condition, the beam focusing can be enhanced and

the focal length is reduced. From the analysis of 	ð jÞ, the

focusing enhancement at the back-diffraction condition can be

qualitatively explained.

4. Experiment

To observe the focusing behavior in a compound refractive

lens using back diffraction of ð120400Þ at 14.4388 keV, an

experiment was carried out at the Taiwan undulator beamline

BL12XU at SPring-8. The synchrotron radiation was first

monochromated by a double-crystal monochromator and then

by an ultra-high-resolution monochromator to give an energy

resolution �E=E ’ 2:5� 10�8 at 14.4388 keV (Yabashi et al.,

2001; Ishikawaa et al., 2005; Chang et al., 2006). The crystal

devices were manufactured from an Si (001) wafer using

microelectronic lithography and dry etching processes. The

detailed experiment has been reported in Chang, Chen, Weng

et al. (2010) and Chang, Chen, Wu et al. (2010). The horizontal

beam sizes of the transmitted beam at various distances

behind the focusing lens were measured by a knife edge to
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Figure 5
(a) The dispersion surface at �E = 5 meV deviation from 14438.8 eV: the
red line is for ð120400Þ back diffraction and the green one is for the one-
beam case (without diffraction). (b) The calculation of 	ð jÞ as a function
of the energy deviation from 14438.8 eV.

Figure 6
The beam-size measurements of the two designed crystal devices: (a)
device 1 and (b) device 2 (�E ’ 5 meV).



determine the focal point. In Fig. 6(a), the red dots and black

dots show the beam-size measurements with and without,

respectively, the back diffraction for crystal device 1. As a

result, the focal length for two-beam back diffraction is

reduced by about 10–13% compared to that for optical

refraction. The observation is in agreement with the theore-

tical simulation. Similar results are obtained for the beam sizes

measured for crystal device 2 in Fig. 6(b).

5. Conclusion

We have presented in this paper a modified algorithm for

dynamical diffraction for the complicated boundary condi-

tions encountered for a curved crystal surface. The calcula-

tions based on this algorithm show that the dynamical

diffraction effect causing the beam splitting in the transmitted

direction is due to the non-parallel crystal boundaries and the

variation of the refractive indices nð jÞ from the normal value

n0 during the excitation of N modes of wave propagation. By

the same token, the enhanced focusing effect in a curved

multi-plate crystal cavity consisting of compound refractive

lenses can also be explained. Furthermore, since the variation

of refractive indices is very sensitive to X-ray energy, one

could apply the dynamical diffraction effect to design other

optical devices, such as a high-resolution X-ray prism.
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